$\qquad$
$\qquad$
$\qquad$

## Practice 9-8

Find the number of solutions of each equation.

1. $x^{2}+6 x+10=0$
2. $x^{2}-4 x-1=0$
3. $x^{2}+6 x+9=0$
4. $x^{2}-8 x+15=0$
5. $x^{2}-5 x+7=0$
6. $x^{2}-4 x+5=0$
7. $3 x^{2}-18 x+27=0$
8. $4 x^{2}-8=0$
9. $-5 x^{2}-10 x=0$
10. $-x^{2}=4 x+6$
11. $4 x^{2}=9 x-3$
12. $8 x^{2}+2=8 x$
13. $7 x^{2}+16 x+11=0$
14. $12 x^{2}-11 x-2=0$
15. $-9 x^{2}-25 x+20=0$
16. $16 x^{2}+8 x=-1$
17. $-16 x^{2}+11 x=11$
18. $12 x^{2}-12 x=-3$
19. $0.2 x^{2}+4.5 x-2.8=0$
20. $-2.8 x^{2}+3.1 x=-0.5$
21. $0.5 x^{2}+0.6 x=0$
22. $1.5 x^{2}-15 x+2.5=0$
23. $-3 x^{2}+27 x=-40$
24. $2.1 x^{2}+4.2=0$
25. One of the games at a carnival involves trying to ring a bell with a ball by hitting a lever that propels the ball into the air. The height of the ball is modeled by the equation $h=-16 t^{2}+39 t$. If the bell is 25 ft above the ground, will it be hit by the ball?
26. You are placing a rectangular picture on a square poster board. You can enlarge the picture to any size. The area of the poster board not covered by the picture is modeled by the equation $A=-x^{2}-10 x+300$. Is it possible for the area not covered by the picture to be $100 \mathrm{in} .^{2}$ ?
27. The equation $h=-16 t^{2}+58 t+3$ models the height of a baseball $t$ seconds after it has been hit.
a. Was the height of the baseball ever 40 ft ?
b. Was the height of the baseball ever 60 ft ?
28. A firefighter is on the fifth floor of an office building. She needs to throw a rope into the window above her on the seventh floor. The function $h=-16 t^{2}+36 t$ models how high above her she is able to throw a rope. If she needs to throw the rope 40 ft above her to reach the seventh-floor window, will the rope get to the window?

Find the number of. $x$-intercepts of the related function of each equation.
29. $-16=x^{2}+10 x$
30. $-5=x^{2}+3 x$
31. $7=x^{2}-2 x$
32. $0=3 x^{2}-3$
33. $0=2 x^{2}+x$
34. $-1=3 x^{2}+2 x$
35. $4=x^{2}-8 x$
36. $-64=x^{2}-16 x$
37. $6=-2 x^{2}-5 x$
38. $2=-4 x^{2}-5 x$
39. $36=-x^{2}+12 x$
40. $6=-5 x^{2}+11 x$

