Practice 8–3			Multiplying Binomials
Simplify each product. Write in standard form.			
1.	(x + 3)(2x - 5)	2. $(x^2 + x - 1)(x + 1)$	3. $(3w+4)(2w-1)$
4.	(x+5)(x+4)	5. $(2b-1)(b^2-3b+4)$	6. (<i>a</i> – 11)(<i>a</i> + 5)
7.	$(2g-3)(2g^2+g-4)$	8. $(3s-4)(s-5)$	9. $(4x + 3)(x - 7)$
10.	$(x+6)(x^2-4x+3)$	11. $(5x-3)(4x+2)$	12. $(3y + 7)(4y + 5)$
13.	(3x+7)(x+5)	14. $(5x-2)(x+3)$	15. $(3m^2 - 7m + 8)(m - 2)$
16.	(a-6)(a+8)	17. $(x+2)(2x^2-3x+2)$	18. $(a^2 + a + 1)(a - 1)$
19.	$(x-2)(x^2+4x+4)$	20. $(2r+1)(3r-1)$	21. $(k + 4)(3k - 4)$
22.	$(2n-3)(n^2-2n+5)$	23. $(p-4)(2p+3)$	24. $(3x + 1)(4x^2 - 2x + 1)$
25.	$(2x^2 - 5x + 2)(4x - 3)$	26. $(x + 7)(x + 5)$	27. $(6x - 11)(x + 2)$
28.	(2x+1)(4x+3)	29. $(3x+4)(3x-4)$	30. $(6x-5)(3x+1)$
31.	(n-7)(n+4)	32. $(3x-1)(2x+1)$	33. $(d+9)(d-11)$
34.	$(2x^2 + 5x - 3)(2x + 1)$	35. $(b+8)(2b-5)$	36. $(2x-5)(x+4)$
37.	(3x + 5)(5x - 7)	38. $(x-5)(2x - 7x - 2)$	39. $(2x^2 - 9x + 11)(2x + 1)$
40.	$(2x^2 + 5x - 4)(2x + 7)$	41. $(x^2 + 6x + 11)(3x + 5)$	42. $(5x + 7)(7x + 3)$
43.	(4x - 7)(2x - 5)	44. $(x-9)(3x+5)$	45. $(2x-1)(x - 7x + 1)$

- **46.** The width of a rectangular painting is 3 in. more than twice the height. A frame that is 2.5 in. wide goes around the painting.
 - **a.** Write an expression for the combined area of the painting and frame.
 - **b.** Use the expression to find the combined area when the height of the painting is 12 in.
 - **c.** Use the expression to find the combined area when the height of the painting is 15 in.
- **47.** The Robertsons put a rectangular pool with a stone walkway around it in their backyard. The total length of the pool and walkway is 3 times the total width. The walkway is 2 ft wide all around.
 - **a.** Write an expression for the area of the pool.
 - **b.** Find the area of the pool when the total width is 10 ft.
 - **c.** Find the area of the pool when the total width is 9 ft.
- **48.** The Cutting Edge frame shop makes a mat by cutting out the inside of a rectangular board. Use the diagram to find the length and width of the original board if the area of the mat is 184 in^2 .

All rights reserved.

Algebra 1 Lesson 8-3