\qquad
\qquad
\qquad

Practice 7-4

Simplify each expression.

1. $\left(4 a^{5}\right)^{3}$
2. $\left(2^{-3}\right)^{4}$
3. $\left(m^{-3} n^{4}\right)^{-4}$
4. $\left(x^{5}\right)^{2}$
5. $2^{5} \cdot\left(2^{4}\right)^{2}$
6. $\left(4 x^{4}\right)^{3}\left(2 x y^{3}\right)^{2}$
7. $\mathrm{x}^{4} \cdot\left(\mathrm{x}^{4}\right)^{3}$
8. $\left(x^{5} y^{3}\right)^{3}\left(x y^{5}\right)^{2}$
9. $\left(5^{2}\right)^{2}$
10. $\left(a^{4}\right)^{-5} \cdot a^{13}$
11. $\left(3 f^{4} g^{-3}\right)^{3}\left(f^{2} g^{-2}\right)^{-1}$
12. $x^{3} \cdot\left(x^{3}\right)^{5}$
13. $\left(d^{2}\right)^{-4}$
14. $\left(a^{3} b^{4}\right)^{-2}\left(a^{-3} b^{-5}\right)^{-4}$
15. $\left(x^{2} y\right)^{4}$
16. $\left(12 b^{-2}\right)^{2}$
17. $\left(m^{-5}\right)^{-3}$
18. $\left(x^{-4}\right)^{5}\left(x^{3} y^{2}\right)^{5}$
19. $\left(y^{6}\right)^{-3} \cdot y^{21}$
20. $n^{6} \cdot\left(\mathrm{n}^{-2}\right)^{5}$
21. $\left(m^{5}\right)^{-3}\left(m^{4} n^{5}\right)^{4}$
22. $\left(a^{3}\right)^{6}$
23. $b^{-9} \cdot\left(b^{2}\right)^{4}$
24. $\left(4^{-1} s^{3}\right)^{-2}$
25. $\left(5 a^{3} b^{5}\right)^{4}$
26. $\left(b^{-3}\right)^{6}$
27. $\left(y^{6}\right)^{3}$
28. $a^{-4} \cdot\left(a^{4} b^{3}\right)^{2}$
29. $\left(x^{4} y^{3}\right)$
30. $d^{3} \cdot\left(d^{2}\right)^{5}$

Simplify. Write each answer in scientific notation.
31. $10^{-9} \cdot\left(2 \times 10^{2}\right)^{2}$
32. $\left(3 \times 10^{-6}\right)^{3}$
33. $10^{4} \cdot\left(4 \times 10^{6}\right)^{3}$
34. $\left(9 \times 10^{7}\right)^{2}$
35. $10^{-3} \cdot\left(2 \times 10^{3}\right)^{5}$
36. $\left(7 \times 10^{5}\right)^{3}$
37. $\left(5 \times 10^{5}\right)^{4}$
38. $\left(2 \times 10^{-3}\right)^{3}$
39. $\left(5 \times 10^{2}\right)^{-3}$
40. $\left(3 \times 10^{5}\right)^{4}$
41. $\left(4 \times 10^{8}\right)^{-3}$
42. $\left(1 \times 10^{-5}\right)^{-5}$
43. $10^{5} \cdot\left(8 \times 10^{7}\right)^{3}$
44. $\left(10^{2}\right)^{3}\left(6 \times 10^{-3}\right)^{3}$
45. $10^{7} \cdot\left(2 \times 10^{2}\right)^{4}$
46. The kinetic energy, in joules, of a moving object is found by using the formula $E=\frac{1}{2} m v^{2}$, where m is the mass and v is the speed of the object. The mass of a car is $1.59 \times 10^{3} \mathrm{~kg}$. The car is traveling at $2.7 \times 10^{1} \mathrm{~m} / \mathrm{s}$. What is the kinetic energy of the car?
47. The moon is shaped somewhat like a sphere. The surface area of the moon is found by using the formula $S=12.56 r^{2}$. What is the surface area of the moon if the radius is $1.08 \times 10^{3} \mathrm{mi}$?
48. Because of a record corn harvest, excess corn is stored on the ground in a pile. The pile is shaped like a cone. The height of the pile is 25 ft , and the radius of the pile is $1.2 \times 10^{2} \mathrm{ft}$. Use the formula $V=\frac{1}{3} \pi r^{2} h$ to find the volume.
49. Suppose the distance in feet that an object travels in t seconds is given by the formula $d=64 t^{2}$. How far would the object travel after 1.5 x 10^{3} seconds?

