Practice 7-3

Multiplication Properties of Exponents

Simplify each expression.

1.
$$(3d^{-4})(5d^8)$$

4.
$$a^3 \cdot a$$

7.
$$p^7 \cdot q^5 \cdot p^6$$

10.
$$\frac{1}{b^{-7} \cdot b^5}$$

13.
$$(8d^4)(4d^7)$$

16.
$$r^7 \cdot s^4 \cdot s \cdot r^3$$

19.
$$2^8 \cdot 2^{-9} \cdot 2^3$$

22.
$$m^{12} \cdot m^{-14}$$

28.
$$f^5 \cdot f^2 \cdot f^0$$

2.
$$(-8m^4)(4m^8)$$

8.
$$(-1.5a^5b^2)(6a)$$

11.
$$p^5 \cdot q^2 \cdot p^4$$

14.
$$X^{-9} \cdot x^3 \cdot x^2$$

17.
$$b^7 \cdot b^{13}$$

20.
$$(6r^4s^3)(9rs^2)$$

23.
$$s^7 \cdot t^4 \cdot t^8$$

26.
$$\frac{1}{h^7 \cdot h^3}$$

29.
$$r^6 \cdot r^{-13}$$

6.
$$(3p^{-15})(6p^{11})$$

9.
$$(-2d^3e^3)(6d^4e^6)$$

12.
$$\frac{1}{n^7 \cdot n^{-5}}$$

15.
$$2^3 \cdot 2^2$$

18.
$$(7p^4)(5p^9)$$

21.
$$4^3 \cdot 4^2$$

24.
$$(-3xy^6)(3.2x^5y)$$

27.
$$\frac{1}{t^{-5} \cdot t^{-3}}$$

31.
$$(7 \times 10^7)(5 \times 10^{-.5})$$

34. $(4 \times 10^9)(4.1 \times 10^8)$

40. (2.1 x 10^{-.4})(4 x 10^{-.7})

32.
$$(3 \times 10^8)(3 \times 10^4)$$

35.
$$(7.2 \times 10^{-.7})(2 \times 10^{..5})$$

37.
$$(6 \times 10^{-6})(5.2 \times 10^4)$$
 38. $(4 \times 10^6)(9 \times 10^8)$

41.
$$(1.6 \times 10^5)(3 \times 10^{11})$$

43.
$$(4 \times 10^9)(11 \times 10^3)$$
 44. $(5 \times 10^{13})(9 \times 10^{-9})$

46.
$$(6 \times 10^{-8})(12 \times 10^{-7})$$
 47. $(6 \times 10^{15})(3.2 \times 10^{2})$

33.
$$(9.5 \times 10^{-4})(2 \times 10^{-5})$$

36.
$$(5 \times 10^7)(4 \times 10^3)$$

39.
$$(6.1 \times 10^9)(8 \times 10^{14})$$

42.
$$(9 \times 10^{12})(0.3 \times 10^{-18})$$

45.
$$(7 \times 10^6)(4 \times 10^9)$$

48.
$$(5 \times 10^8)(2.6 \times 10^{-.16})$$

- **49.** In 1990, the St. Louis metropolitan area had an average of $82 \times 10^{-.6}$ g/m³ of pollutants in the air. How many grams of pollutants were there in 2×10^3 m³ of air?
- **50.** Light travels approximately 5.8 x 10¹² mi in one year. This distance is called a light-year. Suppose a star is 2 x 10⁴ light-years away. How many miles away is that star?
- **51.** The weight of 1 m³ of air is approximately 1.3×10^3 g. Suppose that the volume of air inside of a building is 3×10^6 m³. How much does the air inside the building weigh?
- **52.** Light travels 1.18 x 10¹⁰ in. in 1 second. How far will light travel in 1 nanosecond or 1 x 10⁻⁹ s?