\qquad
\qquad Date \qquad

Find the domain and range of each function.

1. $f(x)=\sqrt{x-7}$
2. $f(x)=\sqrt{3 x-12}$
3. $y=\sqrt{4 x+11}$
4. $y=\sqrt{x-12}$
5. $f(x)=\sqrt{x+14}$
6. $y=\sqrt{x+8}$
7. $y=\sqrt{5 x+13}$
8. $y=\sqrt{2 x+3}$
9. $y=\sqrt{6 x-2}$

Make a table of values and graph each function.
10. $y=\sqrt{x}-12$
11. $y=3 \sqrt{x}$
12. $y=\sqrt{x+8}$
13. $y=\sqrt{x+7}-6$
14. $y=\sqrt{x-6}-8$
15. $y=\sqrt{x-10}$
16. $y=2 \sqrt{x-2}$
17. $y=\sqrt{x-8}+6$
18. $y=\sqrt{x}+7$

Describe how the graph of each function relates to the graph of $\boldsymbol{y}=\sqrt{\boldsymbol{x}}$.
19. $y=\sqrt{x}-9$
20. $y=\sqrt{x-19}$
21. $y=\sqrt{x+18}$
22. $y=\sqrt{x}+11$
23. The number of people involved in recycling in a community is modeled by the function $n=90 \sqrt{3 t}+400$, where t is the number of months the recycling plant has been open.
a. Graph the function.
b. Find the number of people recycling when the plant has been open for 6 mo .
c. Find the month when about 670 people were recycling.
24. The time t, in seconds, that it takes for an object to drop a distance d, in feet, is modeled by the function $t=\sqrt{\frac{d}{16}}$. Assume no air resistance.
a. Graph the function.
b. Find the time it takes for an object to fall 1000 ft .
c. How far does an object fall in 10 s ?

